Validate the daily macroscopes of emotions on social networks

  • Golder, SA & Macy, MW Diurnal and seasonal mood vary with work, sleep, and day length in various cultures. Science 333(6051), 1878 (2011).

    ADS CAS Article Google Scholar

  • Garcia, D. & Rimé, B. Collective emotions and social resilience in digital traces after a terrorist attack. Psychol. Science. 30(4), 617 (2019).

    Google Scholar article

  • Zheng, S., Wang, J., Sun, C., Zhang, X., and Kahn, ME Air pollution reduces happiness expressed by Chinese city dwellers on social media. Nat. Human behavior. 3(3), 237 (2019).

    Google Scholar article

  • Burke, M. et al. Higher temperatures increase suicide rates in the United States and Mexico. Nat. Air conditioning To change 8(8), 723 (2018).

    Article on Google Scholar Ads

  • Ruths, D. & Pfeffer, J. Social media for large behavioral studies. Science 346(6213), 1063 (2014).

    ADS CAS Article Google Scholar

  • Olteanu, A., Castillo, C., Diaz, F. & Kiciman, E. Social data: biases, methodological pitfalls and ethical limits. Front. big data 213 (2019).

    Google Scholar article

  • Sen, I., et al., A total error framework for digital traces of humans. arXiv:1907.08228 [cs] (2019).

  • Ribeiro, FN, Araújo, M., Gonçalves, P., Gonçalves, MA and Benevenuto, F. Sentibench – a benchmark comparison of state-of-the-art sentiment analysis methods. EPJ Data Sci. 5(1), 1 (2016).

    Google Scholar article

  • Beasley, A. & Mason, W. Emotional states versus emotional words in social media. In ACM Web Science Conference Proceedings pages 1 to 10 (2015).

  • Kross, E. et al. Does counting emotional words on online social networks open a window into people’s subjective emotional experience? A case study on facebook. Emotion 19(1), 97 (2019).

    Google Scholar article

  • Jaidka, K. et al. Estimating geographic subjective well-being from Twitter: a comparison of dictionary and data-driven language methods. proc. Natl. Acad. Science. 20201906364 (2020).

    Google Scholar

  • Pellert, M., Lasser, J., Metzler, H. & Garcia, D. Austrian Social Media Sentiment Dashboard during COVID-19. Front. big data 325 (2020).

    Google Scholar article

  • Guhr, O., Schumann, A.-K., Bahrmann, F. and Böhme, HJ In Proceedings of the 12th Conference on Language Resources and Assessment p.p. 1620–1625, Marseille, France May 2020. European Linguistic Resources Association.

  • Wolf, m. et al. Computergestützte quantitative Textanalysequivalenz und Robustheit der deutschen Version des Linguistic Inquiry and Word Count. Diagnosis 54(2), 85 (2008).

    Google Scholar article

  • Metzler, H. et al. Collective emotions during the COVID-19 epidemic. Emotion (in the press).

  • Galesic, M. et al., Nature June 2021.

  • Garcia-Herranz, M., Moro, E., Cebrian, M., Christakis, NA, and Fowler, JH Using Friends as Sensors to Detect Contagious Epidemics on a Global Scale. PLoS One 9(4), e92413 (2014).

    Article on Google Scholar Ads

  • Garcia, D., Pellert, M., Lasser, J. & Metzler, H. Social media emotion macroscopes reflect emotional experiences in society at large. arXiv:2107.13236 [cs] (2021).

  • Ritchie, H. et al., Our world in data (2020).

  • Goldenberg, A. & Gross, JJ Contagion of digital emotions. Trends Conn. Science. 24(4), 316 (2020).

    Google Scholar article

  • Ferrara, E. & Yang, Z. Measuring Emotional Contagion in Social Media. PLoS One ten(11), e0142390 (2015).

    Google Scholar article

  • Gallagher, RJ et al. Generalized Word Shift Graphs: A method for visualizing and explaining pairwise comparisons between texts in EPJ data. Science ten(1), 4 (2021).

    Google Scholar

  • Thelwall, M. Cyberemotions: Collective emotions in cyberspace (2014).

  • Boucher, J. & Osgood, CE The pollyanna hypothesis. J. Verbal learning. Verbal behavior. 8(1), 1 (1969).

    Google Scholar article

  • Garcia, D., Garas, A. & Schweitzer, F. Positive words contain less information than negative words. EPJ Data Sci. 1(1), 1 (2012).

    Google Scholar article

  • Ortiz Suarez, PJ, et al. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics p.p. 1703–1714 Online July 2020. Association for Computational Linguistics.

  • Brown, VG et al. Language models are few learners. arXiv.2005.14165 [cs] (2020).

  • Metzler, H., Pellert, M. & Garcia, D. Using social media data to capture emotions before and during COVID-19. world happiness report75–104 (2022).

  • Niederkrotenthaler, T. et al. Mental health over nine months during the SARS-CoV2 pandemic: Representative cross-sectional survey in twelve waves between April and December 2020 in Austria. J. Affect. Disorder. 29649 (2022).

    CAS Google Scholar Article

  • Kahneman, D., Krueger, AB, Schkade, DA, Schwarz, N. & Stone, AA A survey method for characterizing everyday life experience: the day reconstruction method. Science 306(5702), 1776 (2004).

    ADS CAS Article Google Scholar

  • Krueger, AB & Stone, AA Assessing pain: A community diary-based survey in the United States. Lancet 371(9623), 1519 (2008).

    Google Scholar article

  • Stone, AA The socioeconomic gradient of everyday colds and flu. Headache Pain Arch. Med. Internal. 170(6), 570 (2010).

    Google Scholar article

  • Stone, AA, Schwartz, JE, Broderick, JE, and Deaton, A. An overview of the age distribution of psychological well-being in the United States. proc. Natl. Acad. Science. 107(22), 9985 (2010).

    ADS CAS Article Google Scholar

  • Stone, AA, Schneider, S. & Harter, JK Weekday Mood Patterns in the United States: On the Existence of “Blue Monday,” “Thank God It’s Friday,” and Weekday Effects -end. J.Posit. Psychol. seven(4), 306 (2012).

    Google Scholar article

  • Pennebaker, J.W. et al. Austin: University of Texas at Austin vol 26, 25 (2015).

  • Chan, Ch. et al. Four best practices for measuring news sentiment using “off the shelf” dictionaries: A large-scale p-hacking experiment. Calculation. Common. Res. 3(1), 1 (2021).

    Article on Google Scholar Ads

  • Diedenhofen, B. & Musch, J. cocor: A complete solution for the statistical comparison of correlations. PLoS One ten(4), e0121945 (2015).

    Google Scholar article

  • Hittner, JB, May, K. & Silver, NC A Monte Carlo evaluation of tests for comparing dependent correlations. J. Gen. Psychol. 130(2), 149 (2003).

    Google Scholar article

  • Core team R. R: a language and an environment for statistical computing (R Foundation for Statistical Computing, ***, 2017).

    Google Scholar

  • Zeileis, A. Econometric calculation with HC and HAC covariance matrix estimators. J. Stat. Software 11(10), 1 (2004).

    Google Scholar article

  • Zeileis, A., Köll, S. & Graham, N. Multipurpose Variances: An Object-Oriented Implementation of Clustered Covariances in R. J. Stat. Software 95(1), 1 (2020).

    Google Scholar article

  • About Madeline Powers

    Check Also

    Despite rumors on social media, no cases of monkeypox in Troup; vaccination clinic planned – LaGrange Daily News

    As confirmed cases of monkeypox continue to rise statewide, District 4 Public Health will hold …